Salt on Io
1er janvier 2003
A team of French and American astronomers, led by E. Lellouch, from Paris-Meudon Observatory, has observed the presence of salt (NaCl) in Jupiter’s moon Io’s tenuous atmosphere. This species is most probably produced through volcanic emission. Its presence provides an explanation to the "clouds" of atomic sodium that have been observed to surround Io for almost 30 years.
Figure 1. Two views of Jupiter’s satellite Io and its environment by the Galileo spacecraft. Left : Color mosaïc showing the global aspect of Io’s surface and several manifestations of its volcanic activity. Note the presence of two volcanic plumes, one at the limb (Pillan, 140 km altitude), and the other near the center (Prometheus, seen from above). http://photojournal.jpl.nasa.gov/catalog/PIA01081 Right : A view of the atomic sodium cloud scattering solar light at 589 nm. The very bright spot on Io is the Prometheus plume, also seen is scattered light. http://photojournal.jpl.nasa.gov/catalog/PIA00593 The atmosphere of Jupiter’s moon Io is one of the most peculiar of the Solar System. In 1979, theVoyager spacecraft revealed active volcanism (Figure 1, left) at the surface of the satellite and discovered a local, tenuous SO2 atmosphere. Since 1990, millimeter-wave observations acquired at IRAM (French-German-Spanish telescope) and UV observations with HST provided a somewhat more detailed description of this atmosphere. The typical surface pressure is about 1 nanobar, and, in a unique fashion in the Solar System, the atmosphere exhibits strong horizontal variations, being apparently concentrated in an equatorial band.The main atmospheric compounds are SO2, SO and S2. The atmosphere is probably produced, on the one hand by direct volcanic output, and on the other hand by the sublimation of SO2 ices that cover Io’s surface. However, it has been long suspected than Io’s atmosphere must contain other chemical species. As early as 1974, visible imaging and spectroscopy revealed a "cloud" of atomic sodium (Figure 1, right), roughly centered about Io’s orbit. Detailed subsequent studies of this cloud indicated a complex structure, including notably "fast sodium" features, for the production of which the role of molecular ions (NaX+ ) was evidenced. These discoveries naturally raised the question of the origin of sodium in Io’s environment. From the brightness of the optical emissions of Na, one can estimate that about 1026-1027 sodium atoms leave Io each second. In 1999, chlorine in atomic and ionized form was discovered around Io, with an abundance comparable to that of sodium (while the cosmochemical abundance of Na is about 15 times that of Cl). This suggests a common origin, NaCl being a natural plausible parent of both. At the same time, on the basis of thermochemical equilibrium calculations, NaCl was proposed to be an important compound of Io’s volcanic magmas, with an abudance relative to SO2 as high as several percent.
Figure 2. The spectral lines of the salt molecule NaCl at frequencies of 143 and 234 GHz detected with the 30m telescope of IRAM on 15-17 january 2002. The spectral resolution is 40 kHz. Based on these discoveries and predictions, an observing campaign was conducted by E. Lellouch, from Paris Observatory, and several French and American colleagues at the IRAM 30-m radiotelescope in January 2002. Two rotational lines of NaCl at 143 and 234 GHz were unambiguously detected (Figure 2.). Because the vapor pressure of this salt is entirely negligible, NaCl cannot be in sublimation equilibrium with Io’s surface and its presence must directly result from continuous volcanic output. It appears to be a minor armospheric species. The most plausible physical model depicts the NaCl atmosphere as more localized than SO2, due to its very short lifetime (a few hours at most), and probably restricted to the volcanic centers. The local NaCl abundance in this model is 0.3-1.3 % of SO2, significantly lower than predicted. From the line strengths, volcanic emission rates of (2-8)x1028 NaCl molecules per second can be derived. According to photochemical and escape models, only a small fraction of these molecules escape from Io (about 0.1 %). A somewhat larger amount (1-2 %) leaves Io in atomic form after being photolyzed to Na and Cl. The vast majority of the volcanically-emitted NaCl molecules fall back to the surface where they condense out, potentially contributing to the white color of some of Io’s terrains. In conclusion, it appears that NaCl provides an importante source of sodium and chlorine in Io’s environment ; however the precise chemical nature of the NaX+ molecular ions remains to be elucidated.
Reference : E. Lellouch, G. Paubert, J.I. Moses, N.M. Schneider, and D.F. Strobel. "Volcanically-emitted sodium chloride as a source for Io’s neutral clouds and plasma torus" Nature, 2 January 2003, 421, p. 45-47
Contact
Emmanuel Lellouch (Observatoire de Paris, LESIA)
Dernière modification le 4 mars 2013
Dans la même rubrique
- Première détection de CO dans Uranus
- First detection of CO in Uranus
- Première détection de CO dans Uranus
- First detection of CO in Uranus
- First proof of cold molecular gas associated to a cooling flow
- Première preuve de l’association de gaz moléculaire à un courant de refroidissement
- First proof of cold molecular gas associated to a cooling flow
- Première preuve de l’association de gaz moléculaire à un courant de refroidissement
- From the edge of abyss... First message received from the boundary of the black hole at the centre of our Galaxy
- Depuis le bord de l’abîme... Premier message reçu de la frontière du trou noir au centre de notre Galaxie
- Des équipes de l’Observatoire de Paris font partie des équipes honorées par le Prix Descartes 2003
- Some teams of Paris Observatory are among the teams honored by the European Descartes Price, in 2003
- From the edge of abyss... First message received from the boundary of the black hole at the centre of our Galaxy
- Depuis le bord de l’abîme... Premier message reçu de la frontière du trou noir au centre de notre Galaxie
- Des équipes de l’Observatoire de Paris font partie des équipes honorées par le Prix Descartes 2003
- Some teams of Paris Observatory are among the teams honored by the European Descartes Price, in 2003
- Premières observations coronographiques à l’aide d’un Masque de Phase à 4 Quadrants sur le VLT
- First coronographic observations using a 4 Quadrant Phase Mask on the VLT
- A finite dodecahedral Universe
- Un univers fini dodécaédrique
- Premières observations coronographiques à l’aide d’un Masque de Phase à 4 Quadrants sur le VLT
- First coronographic observations using a 4 Quadrant Phase Mask on the VLT
- A finite dodecahedral Universe
- Un univers fini dodécaédrique
- Fin du voyage pour Galileo : octobre 1989 - septembre 2003
- End of the journey for Galileo : October 1989- September 2003
- Fin du voyage pour Galileo : octobre 1989 - septembre 2003
- End of the journey for Galileo : October 1989- September 2003
- Perspective of discovering true analogs of Jupiter around nearby stars with ALMA
- How is our Galaxy enriched in carbon ?
- Comment notre Galaxie s’enrichit-elle en carbone ?
- How is our Galaxy enriched in carbon ?
- Comment notre Galaxie s’enrichit-elle en carbone ?
- Drastic expansion of Pluto’s atmosphere as revealed by stellar occultations
- L’expansion de l’atmosphère de Pluton révélée par occultations stellaires
- Drastic expansion of Pluto’s atmosphere as revealed by stellar occultations
- L’expansion de l’atmosphère de Pluton révélée par occultations stellaires
- La sonde Mars-Express teste avec succès ses instruments
- Mars-Express successfully tests its instruments
- La sonde Mars-Express teste avec succès ses instruments
- Mars-Express successfully tests its instruments
- First mapping of the area surrounding our solar system
- Première cartographie du voisinage de notre système solaire
- First mapping of the area surrounding our solar system
- Première cartographie du voisinage de notre système solaire
- Passages devant le Soleil de Mercure le 7 mai 2003, et de Vénus le 8 juin 2004
- Transits of Mercury on 7 May 2003, and of Venus on 8 June 2004
- Passages devant le Soleil de Mercure le 7 mai 2003, et de Vénus le 8 juin 2004
- Transits of Mercury on 7 May 2003, and of Venus on 8 June 2004
- Variation of fundamental constants constrained by atomic fountain clocks
- Variation des constantes fondamentales contrainte par les fontaines atomiques
- Variation of fundamental constants constrained by atomic fountain clocks
- Variation des constantes fondamentales contrainte par les fontaines atomiques
- What are these mysterious Low Surface Brightness galaxies ?
- Que sont ces mystérieuses Galaxies à Faible Brillance de Surface ?
- What are these mysterious Low Surface Brightness galaxies ?
- Que sont ces mystérieuses Galaxies à Faible Brillance de Surface ?
- Polar ring galaxies and dark matter
- Matière noire et galaxies à anneaux polaires
- Polar ring galaxies and dark matter
- Matière noire et galaxies à anneaux polaires
- Overabundance of nitrogen onto a magnetic white dwarf
- Surabondance d’azote dans des couples cataclysmiques
- Overabundance of nitrogen onto a magnetic white dwarf
- Surabondance d’azote dans des couples cataclysmiques
- R127 et son amas d’étoiles massives
- R127 and its massive star cluster
- R127 et son amas d’étoiles massives
- R127 and its massive star cluster
- Origine des vents zonaux dans les atmosphères des planètes géantes
- Origin of atmospheric zonal winds in giant planets
- Origine des vents zonaux dans les atmosphères des planètes géantes
- Origin of atmospheric zonal winds in giant planets
- Salt on Io
- Du sel sur Io
- Vibrations of the Cosmic Drumhead
- Comment Vibre le Tambour Cosmique ?
- Vibrations of the Cosmic Drumhead
- Comment Vibre le Tambour Cosmique ?

