Remnants of the 1994 comet crash in Jupiter
1er septembre 2004
jupiter-f1.jpg Figure 1 In July 1994, more than 20 fragments of Comet Shoemaker-Levy 9 (SL9) collided with Jupiter. New gas compounds, produced through shock chemistry along with dark solid particles, were then deposited in the stratosphere. Some species, such as HCN and CO2, are still detectable today. [Credit NASA/Hubble Space Telescope Comet Science Team]. Click on the image to enlarge it The Cassini spacecraft, now orbiting Saturn, swung by Jupiter in December 2000. The infrared spectrometer CIRS observed the planet in the spectral range 10 - 1400 cm-1 (7 mm - 1 mm) at a spectral resolution up to 0.5 cm-1 and a spatial resolution of 0.02 of the planetary diameter at closest approach. The data collected during the encounter allowed mapping the abundances of HCN and CO2 in the Jovian stratosphere (Kunde et al. 2004). HCN peaks near the impact latitude (45°S) and has a broad distribution (see Figure 2). It decreases smoothly toward the north up to approximately 50°N. Beyond 50° N or S, the abundance falls off abruptly. Once produced by shock chemistry during the SL9 impacts, HCN is stable, so that it is a tracer of atmospheric motions. The location of peak abundance still being around the impact latitude indicates that equatorial spreading occurred mostly by wave-induced diffusion rather than meridional winds. The decrease at high latitudes could result from strong circumpolar winds (vortices), which dynamically isolate polar regions from lower latitudes. This effect is analogous to the polar vortex that produces a confinement vessel for the Antarctic ozone hole in Earth’s stratosphere.
jupiter-f2.gif Figure 2 Latitudinal distribution of HCN and CO2 as determined from measurements by the CIRS instrument aboard Cassini in December 2000. The plotted intensities are proportional to the column abundance of the species. The original source of these two compounds is thought to be the SL9 impact in 1994, around 45°S. The differences in their latitudinal variations are thus unexpected and not clearly understood. Click on the image to enlarge it In this framework, the distribution of CO2 is quite surprising, with a maximum concentration southward of 60°S, three times higher than at the impact latitude. It decreases abruptly northward of 50°S and is only marginally detected northward of 30°S. If, as admitted up to now, HCN and CO2 are both products of the SL9 collision (Griffith et al. 2004 ; Lellouch et al. 2002) and are similarly distributed in altitude, this is extremely surprising and difficult to understand. Perhaps the two species got distributed at different altitudes and are therefore transported by different atmospheric currents. An alternative interpretation is that some non-SL9 or post SL9 chemistry is involved. Maybe the formation of carbon dioxide is more complex than we thought. In fact, the precipitation of oxygen ions from the Jovian magnetosphere in the auroral regions may lead to the formation of water vapor and OH radicals. These radicals could then react with the CO from SL9 and form, at high southern latitudes, the CO2 observed by Cassini/CIRS. It not clear however if the oxygen influx required to reproduce the observations is consistent or not with the loading rate of the magnetosphere from the Galilean satellites (mostly Io). These observations clearly give valuable insights into the dynamics and chemistry of the upper atmosphere of Jupiter. We still need to work on the above, or perhaps others, scenarios to really understand what the observations mean !
References Kunde, V.G., Flasar, F.M., Jennings, D.E., Bézard, B., Strobel, D.F. et al. 2004. Jupiter’s atmospheric composition from the Cassini thermal infrared spectroscopy experiment. À paraître dans Science (10 septembre 2004). Online version accessible at http://www.sciencexpress.org (19 august 2004) Griffith, C.A., Bézard, B., Greathouse, T., Lellouch, E., Lacy, J., Kelly, D., Richter, M.J. 2004. Meridional transport of HCN from SL9 impacts on Jupiter. Icarus 170, 58-69 Lellouch, E., Bézard, B., Moses, J.I., Drossart, P., Feuchtgruber, H., Bergin, E.A., Moreno, R., Encrenaz, T. 2002. The origin of water vapor and carbon dioxide in Jupiter’s stratosphere. Icarus 159, 112-131 Several co-investigators from LESIA are participating to the analysis of the CIRS data. Contact Bruno Bézard (Observatoire de Paris, LESIA) Emmanuel Lellouch (Observatoire de Paris, LESIA)
Dernière modification le 4 mars 2013
Dans la même rubrique
- Des aurores planétaires visualisent la trace d’un choc interplanétaire du Soleil jusqu’à Saturne (9 UA)
- Planetary aurorae trace an interplanetary shock from the Sun to Saturn (9 AU)
- Des aurores planétaires visualisent la trace d’un choc interplanétaire du Soleil jusqu’à Saturne (9 UA)
- Planetary aurorae trace an interplanetary shock from the Sun to Saturn (9 AU)
- Des cycles glaciaires intenses sur Mars
- Severe glacial cycles on Mars
- Des cycles glaciaires intenses sur Mars
- Severe glacial cycles on Mars
- Recipe for a planet
- Recette pour une planète
- Campagne internationale JOP178 des 5-19 octobre 2004 : 11 instruments solaires pointent le même filament, THÉMIS cartographie le champ magnétique
- International Joint Observing Program JOP178, 2004 October 5-19 : 11 solar instruments point the same filament, THEMIS maps the vector magnetic field
- Recipe for a planet
- Recette pour une planète
- Campagne internationale JOP178 des 5-19 octobre 2004 : 11 instruments solaires pointent le même filament, THÉMIS cartographie le champ magnétique
- International Joint Observing Program JOP178, 2004 October 5-19 : 11 solar instruments point the same filament, THEMIS maps the vector magnetic field
- Première carte de rayons gamma d’énergie TeV d’une source cosmique : un reste de supernova
- First image of TeV-energy gamma-rays of a cosmic source : a supernova remnant
- Première carte de rayons gamma d’énergie TeV d’une source cosmique : un reste de supernova
- First image of TeV-energy gamma-rays of a cosmic source : a supernova remnant
- A new astronomical solution for the calibration of a geological time scale
- Une nouvelle solution astronomique pour la calibration des échelles de temps géologiques
- VLTI watches the pulsation of four southern Cepheids
- Le VLTI observe la pulsation de quatre Céphéides australes
- A new astronomical solution for the calibration of a geological time scale
- Une nouvelle solution astronomique pour la calibration des échelles de temps géologiques
- VLTI watches the pulsation of four southern Cepheids
- Le VLTI observe la pulsation de quatre Céphéides australes
- Les galaxies irrégulières naines : pas si élémentaires après tout
- Dwarf Irregular Galaxies : Not so pristine after all
- Les galaxies irrégulières naines : pas si élémentaires après tout
- Dwarf Irregular Galaxies : Not so pristine after all
- Prédire le destin du Soleil : l’environnement proche des étoiles Mira observé par interférométrie
- Foreseeing the Sun’s fate : Astronomical interferometry reveals the close environment of Mira stars
- Prédire le destin du Soleil : l’environnement proche des étoiles Mira observé par interférométrie
- Foreseeing the Sun’s fate : Astronomical interferometry reveals the close environment of Mira stars
- Remnants of the 1994 comet crash in Jupiter
- Jupiter : toujours des cicatrices de la collision cométaire de 1994
- Comment s’est formée la planète du système binaire Gamma-Cephei ?
- How did the planet in the Gamma-Cephei binary system form ?
- Comment s’est formée la planète du système binaire Gamma-Cephei ?
- How did the planet in the Gamma-Cephei binary system form ?
- Des monstres cosmiques boulimiques
- Overeating Monsters
- Titan, un nouveau monde se dévoile
- Titan, a new world is unveiled
- Titan, un nouveau monde se dévoile
- Titan, a new world is unveiled
- La capture de Mercure en résonance spin-orbite 3:2 s’explique par le mouvement chaotique de son orbite
- The explanation of Mercury’s capture into the 3:2 spin-orbit resonance as a result of its chaotic orbital dynamics
- La capture de Mercure en résonance spin-orbite 3:2 s’explique par le mouvement chaotique de son orbite
- The explanation of Mercury’s capture into the 3:2 spin-orbit resonance as a result of its chaotic orbital dynamics
- CASSINI fait son entrée dans le système de Saturne
- CASSINI enters the Saturn system
- CASSINI fait son entrée dans le système de Saturne
- CASSINI enters the Saturn system
- Des monstres cosmiques boulimiques
- Overeating Monsters
- De l’eau oxygénée sur Mars
- Hydrogen peroxide on Mars
- De l’eau oxygénée sur Mars
- Hydrogen peroxide on Mars
- Première observation d’un noyau actif de galaxie avec le VLTI : résolution du tore au coeur de NGC 1068
- First observation of an active galactic nucleus with the VLTI : resolution of the torus at the heart of NGC 1068
- Première observation d’un noyau actif de galaxie avec le VLTI : résolution du tore au coeur de NGC 1068
- First observation of an active galactic nucleus with the VLTI : resolution of the torus at the heart of NGC 1068
- Les nouveaux astéroïdes cibles de la mission Rosetta : 21 Lutetia et 2867 Steins
- The new asteroid targets of Rosetta mission : 21 Lutetia and 2867 Steins
- Les nouveaux astéroïdes cibles de la mission Rosetta : 21 Lutetia et 2867 Steins
- The new asteroid targets of Rosetta mission : 21 Lutetia and 2867 Steins
- Atomic hydrogen from circumstellar shells around AGB stars
- L’hydrogène atomique dans les enveloppes circumstellaires autour des étoiles AGB
- De l’antigel dans la comète Hale-Bopp
- Antifreeze in comet Hale-Bopp
- De l’antigel dans la comète Hale-Bopp
- Antifreeze in comet Hale-Bopp
- Répartition des glaces de H2O et CO2 dans la calotte polaire sud de Mars Observations OMEGA/Mars Express
- Repartition of H2O and CO2 ices on the south polar cap of Mars Observations OMEGA/Mars Express
- Répartition des glaces de H2O et CO2 dans la calotte polaire sud de Mars Observations OMEGA/Mars Express
- Repartition of H2O and CO2 ices on the south polar cap of Mars Observations OMEGA/Mars Express
- Atomic hydrogen from circumstellar shells around AGB stars
- L’hydrogène atomique dans les enveloppes circumstellaires autour des étoiles AGB
- Time evolution of protoneutron stars
- L’évolution temporelle des proto-étoiles à neutrons
- Time evolution of protoneutron stars
- L’évolution temporelle des proto-étoiles à neutrons
- First results of the ESA/Mars Express orbiter around Mars
- Premiers résultats de la sonde Mars Express de l’ESA en orbite autour de Mars
- First results of the ESA/Mars Express orbiter around Mars
- Premiers résultats de la sonde Mars Express de l’ESA en orbite autour de Mars
- Lancement de Rosetta par Ariane-5
- L’Observatoire participera à la réalisation de l’instrument infrarouge MIRI, sur le futur télescope spatial JWST
- Paris Observatory will participate in the realisation of the infrared instrument MIRI, on the future space telescope JWST
- L’Observatoire participera à la réalisation de l’instrument infrarouge MIRI, sur le futur télescope spatial JWST
- Paris Observatory will participate in the realisation of the infrared instrument MIRI, on the future space telescope JWST
- Conceptual unification of elementary particles, black holes and the primordial states of the universe
- Unification conceptuelle des particules élémentaires, trous noirs et les états primordiaux de l’univers
- Conceptual unification of elementary particles, black holes and the primordial states of the universe
- Unification conceptuelle des particules élémentaires, trous noirs et les états primordiaux de l’univers

