First Fringes at VLTI and Application to Cepheids
1er décembre 2001
On October 29, 2001, the first fringes were obtained by the optical interferometer VLTI (ESO-VLT), by combining the light coming from the two 8m-telescopes ANTU (UT1) and MELIPAL (UT3) in the VINCI instrument, at Paranal. In the following days, interferometric measurements were done for several astronomical objects, including red dwarfs, supermassive variable stars, and Cepheids. Pierre Kervella from Paris-Meudon Observatory, and his collaborators, report about these exciting moments, and the importance of the Cepheid results. The Very Large Telescope (VLT) of the ESO Observatory on Cerro Paranal (2635 m) in Northern Chile, is composed of four large telescopes, that are meant to be used in an interferometric mode, the VLTI.
vlt-sunset.jpg The VLT (Very Large Telescope) of ESO at Paranal (Chile) is composed of four telescopes of 8.2m diameter each, that are visible on this photograph at sunset. For the interferometric project, there are also auxiliary telescopes, of 1.8m in diameter. Click on the photo, to enlarge its size.
On March 17, 2001, the VLT Interferometer observed its first fringes on a star, using two siderostats and the test camera VINCI, built by the Paris-Meudon Observatory. Details on the experiment and about interferometry in general can be found in the references below. Click on the photo, to enlarge its size. VINCI.jpg On October 29, 2001, the first fringes with two main units, UT1 (ANTU) and UT3 (MELIPAL) were successfully obtained.
hydra1.jpg hydra2.gif First fringes obtained on Alpha Hydrae, in March 2001, between two small test telescopes of the VLTI. The diameter of the bright star has been determined to be 0.00928±0.00017 arcsec.
Application to Cepheids
Cepheids are variable supergiant stars : they undergo radial pulsations, and their radius and luminosity oscillate with a period of the order of 5 to 60 days. They are known to obey a tight relation P(L) between their absolute luminosity L and their oscillation period P. Once this relation is calibrated precisely for nearby Cepheids, the absolute luminosity of remote Cepheids is derived from the measured period, and therefore their distance, and by the way also the distance of the objects (clusters, galaxies) in which they are included. Indeed, the distance of a star is easily derived from the comparison of its absolute luminosity to its apparent luminosity. And thus a precise P(L) relation converts the Cepheids into primary distance indicators for extragalactic astronomy. The calibration of the relation P(L) is delicate, however. Even the nearest Cepheids are usually too far away for a direct measurement of their distance (and absolute luminosity). The angular diameter is usually not measurable from a single telescope. In a first method, called the Baade-Wesselink method, the radial velocity (velocimetry) and the color (colorimetry) of the star is measured all along the period. Two times (phases) are chosen in which the star has the same color but different radii and different luminosities. The (common) temperature is evaluated from the (common) color, the ratio of the radii is derived fom the ratio of the apparent luminosities, the difference between the two radii is derived from the integration of the velocity between the two selected times. A simple algebra derives the two values of the radius, the absolute luminosity follows from the knowledge of the radius and temperature (hence the distance). The method is sensitive to the temperature error. A better estimation is obtained, when the angular size of the star is measured with an interferometer. Long baselines are required, since the diameter is of the order of a few milli-arcsecond (mas). The second method relies heavily on long baseline interferometers : with the latter, the angular diameter of the Cepheid variable star is measured at two different phases of its pulsation. This provides a first number X : the amplitude of its angular size variation between these two phases. This first result is usually expressed in milliarcseconds. Complementary observations by radial velocimetry (spectroscopic measurement of the speed of the surface of the star) are then used to determine the linear amplitude of the diameter variation of the Cepheid between the two same phases as above. This second number Y is a linear value, expressed in meters. Using the two values X and Y measured above, it is possible to compute directly the distance in parsecs to the star through the simple equation d[pc] = 9.305 * Y[m] / X[mas].
A second method to obtain the distances to the Cepheids Left : Measurement of the radial velocity (perpendicular to the sky plane) as a function of time Right : Direct measurement of the oscillations of the stellar radius
Because of the turbulence of the atmosphere, which is worse at visible wavelengths, interferometric measurements are easier in the near-infrared bands (near 2 microns). The spatial resolution that can be obtained is proportional to the distance between the interfering telescopes (the baseline). Below are presented observations of the Cepheid Zeta Geminorum with the FLUOR beam combiner, installed at the IOTA interferometer. The mean uniform disk angular diameter was measured to be 1.64 +0.14 -0.16 mas. The distance to zeta Gem is evaluated by the first method above to be 502 +/- 88 pc. FLUOR (Fiber Linked Unit for Optical Recombination) has served as a proto-type of the VINCI instrument, and is one of the three recombination instruments of IOTA (Infrared and Optical Telescope Array), a collaboration with 5 American Institutions, in Arizona. The measurement was also done last November with the VLTI, with the interferences between ANTU and MELIPAL (distant by a baseline of 102m). The angular diameter was measured more accurately, to be 1.78 +/- 0.02 mas. Pulsational variations were not detected with FLUOR/IOTA, but are expected to be measured with VINCI/VLTI.
Left : Study of the Cepheid Zeta Gem with FLUOR/IOTA in 1999/2000. The pulsation is not detected, but the diameter is measured to be 1.64 +/- 0.16 mas Right : Model of the pulsation curve of Zeta Gem as will be observed with VINCI/VLTI, based on the precision achieved during the commissioning run (by P. Kervella)
During 2002, the VLTI science instruments MIDI and AMBER and the fringe sensor unit FINITO will arrive, and the integration of the Auxiliary Telescopes will start. Once the ATs and the science instruments are functional, regular science operations can start.
References P. Kervella, V. Coudé du Foresto, G. Perrin, M.Schoeller, W. A. Traub, M. G. Lacasse, 2001, ``The angular diameter and distance of the Cepheid Zeta Geminorum’’ Astronomy and Astrophysics, 367, 876 (astro-ph/0102359)P. Kervella, Soutenance de thèse, le 14 Novembre 2001 power-point documentGiant Eyes for the VLT Interferometer First Scientific Results with Combined Light Beams from Two 8.2-m Unit Telescopes ESO Press Release 23/01, 5 November 2001 "First Light" for the VLT Interferometer - Excellent Fringes From Bright Stars Prove VLTI Concept ESO Press Release 06/01, 18 March 2001
Contact : Pierre Kervella (DESPA, Observatoire de Meudon and ESO-Garching) Vincent Coudé du Foresto (DESPA, Observatoire de Meudon),
Dernière modification le 4 mars 2013
Dans la même rubrique
- Images of unprecedented sharpness : the first light of NAOS, the adaptive optics of the VLT, is a success
- Des images d’une finesse inégalée : la première lumière de NAOS, l’optique adaptative du VLT est un succès
- Images of unprecedented sharpness : the first light of NAOS, the adaptive optics of the VLT, is a success
- Des images d’une finesse inégalée : la première lumière de NAOS, l’optique adaptative du VLT est un succès
- Un petit Univers Sphérique ?
- A Small Spherical Universe after All ?
- Un petit Univers Sphérique ?
- A Small Spherical Universe after All ?
- Delivery of GIRAFFE : multi-fibers spectrograph for the VLT
- Livraison de GIRAFFE : spectrographe multi-fibres pour le VLT
- Delivery of GIRAFFE : multi-fibers spectrograph for the VLT
- Livraison de GIRAFFE : spectrographe multi-fibres pour le VLT
- First Fringes at VLTI and Application to Cepheids
- Premières franges au VLTI et application aux Céphéides
- Une Nouvelle Barre au centre de la Voie Lactée
- A New Bar in the Center of the Milky Way
- Une Nouvelle Barre au centre de la Voie Lactée
- A New Bar in the Center of the Milky Way
- Peinture à la lumière
- Painting with oxygen and hydrogen
- Peinture à la lumière
- Painting with oxygen and hydrogen
- A la recherche de l’Univers Froid Les enveloppes circumstellaires des étoiles de la Branche Asymptotique des Géantes
- Cold atomic matter in the Universe Circmstellar shells around Asymptotic Giant Branch stars
- A la recherche de l’Univers Froid Les enveloppes circumstellaires des étoiles de la Branche Asymptotique des Géantes
- Cold atomic matter in the Universe Circmstellar shells around Asymptotic Giant Branch stars
- "Ça s’en va et ça revient..."
- "What goes around comes around..."
- "Ça s’en va et ça revient..."
- "What goes around comes around..."
- PREMIERS CALCULS DES ORBITES D’UN SYSTÈME BINAIRE DE TROUS NOIRS
- FIRST COMPUTATIONS OF THE ORBITS IN A BINARY BLACK HOLE SYSTEM
- PREMIERS CALCULS DES ORBITES D’UN SYSTÈME BINAIRE DE TROUS NOIRS
- FIRST COMPUTATIONS OF THE ORBITS IN A BINARY BLACK HOLE SYSTEM
- Le problème de la polarisation de la lumière du Soleil calme : l’apport de THEMIS
- The problem of the light polarization on the quiet Sun : the contribution of THEMIS
- Le problème de la polarisation de la lumière du Soleil calme : l’apport de THEMIS
- The problem of the light polarization on the quiet Sun : the contribution of THEMIS
- Première cartographie radio d’une éjection de masse dans la couronne du Soleil
- First radio cartography of solar coronal mass ejection
- Première cartographie radio d’une éjection de masse dans la couronne du Soleil
- First radio cartography of solar coronal mass ejection
- Découverte d’une nébuleuse planétaire remarquable
- Discovery of a remarkable planetary nebula
- Découverte d’une nébuleuse planétaire remarquable
- Discovery of a remarkable planetary nebula
- Pluie de météores des Aurigides
- Comment la sismologie peut-elle distinguer une étoile pré-séquence principale d’une étoile de séquence principale ?
- How seismology can distinguish a pre-main-sequence star from a main-sequence star ?
- Comment la sismologie peut-elle distinguer une étoile pré-séquence principale d’une étoile de séquence principale ?
- How seismology can distinguish a pre-main-sequence star from a main-sequence star ?
- FORMATION D’ETOILES DE FAIBLE MASSE DANS LE NUAGE MOLECULAIRE D’ORION (OMC1) ?
- Prédiction des orbites des planètes et exo-planètes
- Orbit predictions for planets and exo-planets
- Prédiction des orbites des planètes et exo-planètes
- Orbit predictions for planets and exo-planets
- Découverte d’un satellite autour de l’objet transneptunien 1998 WW31
- Discovery of a satellite around the transneptunian object 1998 WW31
- Découverte d’un satellite autour de l’objet transneptunien 1998 WW31
- Discovery of a satellite around the transneptunian object 1998 WW31
- Le disque d’accrétion autour des trous noirs super-massifs : existe-t-il vraiment ?
- The accretion disks around super-massive black holes : do they really exist ?
- Le disque d’accrétion autour des trous noirs super-massifs : existe-t-il vraiment ?
- The accretion disks around super-massive black holes : do they really exist ?
- Observatoire Spatial de l’Univers Extrême Approuvé par l’ESA en mars 2001 pour l’étude de phase A
- Extreme Universe Space Observatory Approved by ESA in March 2001 for Phase A Study
- Observatoire Spatial de l’Univers Extrême Approuvé par l’ESA en mars 2001 pour l’étude de phase A
- Extreme Universe Space Observatory Approved by ESA in March 2001 for Phase A Study
- De la turbulence pour faire vibrer les étoiles
- Turbulence to make stars vibrate
- De la turbulence pour faire vibrer les étoiles
- Turbulence to make stars vibrate
- PREMIERE MESURE DE L’ABONDANCE DE L’URANIUM DANS UNE ETOILE
- FIRST MEASURE OF URANIUM ABUNDANCE IN A STAR
- PREMIERE MESURE DE L’ABONDANCE DE L’URANIUM DANS UNE ETOILE
- FIRST MEASURE OF URANIUM ABUNDANCE IN A STAR
- LES PULSARS ET LES BINAIRES X SONT-ILS DES ETOILES ETRANGES ?
- ARE PULSARS AND X-BINARIES STRANGE STARS ?
- LES PULSARS ET LES BINAIRES X SONT-ILS DES ETOILES ETRANGES ?
- ARE PULSARS AND X-BINARIES STRANGE STARS ?
- Etoiles Individuelles dans le Bulbe de la Galaxie d’Andromède
- Individual Stars in Andromeda’s Bulge
- Etoiles Individuelles dans le Bulbe de la Galaxie d’Andromède
- Individual Stars in Andromeda’s Bulge

