A new astronomical solution for the calibration of a geological time scale
1er octobre 2004
A team led by Jacques Laskar, from IMCCE/CNRS and Paris Observatory has released a new solution for the long term evolution of the orbital and rotational motion of the Earth. Using Milankovitch paleoclimate cycles, this solution has already been used as a reference time scale for the calibration of the sedimentary records over the Neogene period (0-23.03 Myr) in the new geological time scale (GTS2004) adopted by the International Comission of Stratigraphy (ICS) and the International Union of Geological Sciences (IUGS). It is the first time that an astronomical solution has been used to establish the ICS geological chronology over a full geological period.
Read the Press Release ofAstronomy & Astrophysics
Due to gravitational planetary perturbations, the orbit of the Earth is slowly changing in time, so as the orientation of the planet’s spin axis. These changes induce variations of the insolation received on the Earth’s surface that are, according to Milankovitch theory of paleoclimate (1941), responsible for some of the large climate changes in the past. Since the landmark work of Hays, Imbrie, and Shackleton, (1976), which established a clear correlation over 500 kyr between astronomical forcing and the ratio 18O/ 16O in marine sediments, the Milankovitch theory has been confirmed overall (see Imbrie and Imbrie, 1979, for historical details). Geologists are now currently using the computed evolution of the Earth orbit and rotational parameters for the calibration of sedimentary cores over several millions of years. Paris Observatory has been involved for a long time in the computation of planetary orbits variations over an extended time span. Indeed, Le Verrier, famed for the discovery of Neptune in 1846, and the former director of Paris Observatory computed in 1856 an analytical solution for the long term evolution of the Earth orbit. This solution was used by Milankovitch to establish his theory of paleoclimates. More recently, the paleoclimate community has used for their calibration of sedimentary cores the orbital solution from Paris Observatory derived by Bretagnon (1974) and Laskar et al. (1993). This latest solution was estimated to have a length of validity of about 10 Myrs, but the improvement in collecting of the geological data was urging for a new solution. As a result of the chaotic behaviour of the planetary orbits (Laskar, 1989), the uncertainty in these computations is multiplied by 10 every 10 Myr. It is thus hopeless to search for a precise solution of the Earth past evolution beyond 100 Myr, but it is possible to obtain a precise solution over a few tens of millions of years. The new solution published in this issue of Astonomy and Astrophysics can be used for the calibration of paleoclimate data for the last 40 - 50 Myr. This solution has indeed already been used for the establishement of the new Geological Time Scale GTS2004 for the Neogene period (0-23.03 Myr) (Lourens et al, 2004). This new time scale, adopted by the International Union of Geological Sciences (IUGS) results from a cooperative effort among sedimentologists around the world in view to obtain an overall view of the Earth’ history from now to about 3.8 Gyr. The adoption of the astronomical solution for the calibration of the Neogene period allows to obtain a precision of about 40 kyr (one obliquity cycle) over the full range of the Neogene. This adoption resulted in a change of about 0.8 Myr of the Neogene/Paleogene limit with respect to the previous determination, obtained through radiogenic data. The authors of the present paper also show that if we do not search for a complete solution of the Earth orbit, but just for the main variation of its orbit eccentricity, a relatively stable modulation of 405 kyr, resulting from the perturbations of Jupiter and Saturn (that are more stable than the inner planets) can be used over the full Mesozoic era (up to about 250 Myr) for the astronomical calibration of sediments with an uncertainty of about 0.5 Myr after 250 Myr. This term is actually related to a geological cycle that is present in some jurassic and triassic sediments. Due to the tidal dissipation in the Earth-Moon system, the Earth’s rotation slows down, and the Moon is receding away at about 3.82 cm/yr. This induces a slow increase in the obliquity (angle between the Earth’s equator and the orbit) of about 2 degrees per Gyr. However, J. Laskar and his colleagues show that in the near future, a resonance with a small gravitational perturbing effect of Jupiter and Saturn, will make the obliquity decrease of about 0.4 degrees within a few millions of years, with some possible impact on the climate. When looking for the evolution of the obliquity of the Earth, it is surprising to see (fig. 2) that this crossing of resonance is the only noticeable singularity from -250 Myr to + 250 Myr. Nevertheless, as this change occurs in the future, the authors assume that unless some new results of the past evolution of the dynamical shape of the Earth show that the crossing of this singularity could have also existed in the past, one should consider that the proximity of this resonance is pure chance. The solution and associated files are freely available on the website http://www.imcce.fr/Equipes/ASD/insola/earth/earth.html Contacts Jacques Laskar (Observatoire de Paris, IMCCE)
Dernière modification le 4 mars 2013
Dans la même rubrique
- Des aurores planétaires visualisent la trace d’un choc interplanétaire du Soleil jusqu’à Saturne (9 UA)
- Planetary aurorae trace an interplanetary shock from the Sun to Saturn (9 AU)
- Des aurores planétaires visualisent la trace d’un choc interplanétaire du Soleil jusqu’à Saturne (9 UA)
- Planetary aurorae trace an interplanetary shock from the Sun to Saturn (9 AU)
- Des cycles glaciaires intenses sur Mars
- Severe glacial cycles on Mars
- Des cycles glaciaires intenses sur Mars
- Severe glacial cycles on Mars
- Recipe for a planet
- Recette pour une planète
- Campagne internationale JOP178 des 5-19 octobre 2004 : 11 instruments solaires pointent le même filament, THÉMIS cartographie le champ magnétique
- International Joint Observing Program JOP178, 2004 October 5-19 : 11 solar instruments point the same filament, THEMIS maps the vector magnetic field
- Recipe for a planet
- Recette pour une planète
- Campagne internationale JOP178 des 5-19 octobre 2004 : 11 instruments solaires pointent le même filament, THÉMIS cartographie le champ magnétique
- International Joint Observing Program JOP178, 2004 October 5-19 : 11 solar instruments point the same filament, THEMIS maps the vector magnetic field
- Première carte de rayons gamma d’énergie TeV d’une source cosmique : un reste de supernova
- First image of TeV-energy gamma-rays of a cosmic source : a supernova remnant
- Première carte de rayons gamma d’énergie TeV d’une source cosmique : un reste de supernova
- First image of TeV-energy gamma-rays of a cosmic source : a supernova remnant
- VLTI watches the pulsation of four southern Cepheids
- Le VLTI observe la pulsation de quatre Céphéides australes
- A new astronomical solution for the calibration of a geological time scale
- Une nouvelle solution astronomique pour la calibration des échelles de temps géologiques
- VLTI watches the pulsation of four southern Cepheids
- Le VLTI observe la pulsation de quatre Céphéides australes
- Remnants of the 1994 comet crash in Jupiter
- Jupiter : toujours des cicatrices de la collision cométaire de 1994
- Les galaxies irrégulières naines : pas si élémentaires après tout
- Dwarf Irregular Galaxies : Not so pristine after all
- Les galaxies irrégulières naines : pas si élémentaires après tout
- Dwarf Irregular Galaxies : Not so pristine after all
- Prédire le destin du Soleil : l’environnement proche des étoiles Mira observé par interférométrie
- Foreseeing the Sun’s fate : Astronomical interferometry reveals the close environment of Mira stars
- Prédire le destin du Soleil : l’environnement proche des étoiles Mira observé par interférométrie
- Foreseeing the Sun’s fate : Astronomical interferometry reveals the close environment of Mira stars
- Remnants of the 1994 comet crash in Jupiter
- Jupiter : toujours des cicatrices de la collision cométaire de 1994
- Comment s’est formée la planète du système binaire Gamma-Cephei ?
- How did the planet in the Gamma-Cephei binary system form ?
- Comment s’est formée la planète du système binaire Gamma-Cephei ?
- How did the planet in the Gamma-Cephei binary system form ?
- Des monstres cosmiques boulimiques
- Overeating Monsters
- Titan, un nouveau monde se dévoile
- Titan, a new world is unveiled
- Titan, un nouveau monde se dévoile
- Titan, a new world is unveiled
- La capture de Mercure en résonance spin-orbite 3:2 s’explique par le mouvement chaotique de son orbite
- The explanation of Mercury’s capture into the 3:2 spin-orbit resonance as a result of its chaotic orbital dynamics
- La capture de Mercure en résonance spin-orbite 3:2 s’explique par le mouvement chaotique de son orbite
- The explanation of Mercury’s capture into the 3:2 spin-orbit resonance as a result of its chaotic orbital dynamics
- CASSINI fait son entrée dans le système de Saturne
- CASSINI enters the Saturn system
- CASSINI fait son entrée dans le système de Saturne
- CASSINI enters the Saturn system
- Des monstres cosmiques boulimiques
- Overeating Monsters
- De l’eau oxygénée sur Mars
- Hydrogen peroxide on Mars
- De l’eau oxygénée sur Mars
- Hydrogen peroxide on Mars
- Première observation d’un noyau actif de galaxie avec le VLTI : résolution du tore au coeur de NGC 1068
- First observation of an active galactic nucleus with the VLTI : resolution of the torus at the heart of NGC 1068
- Première observation d’un noyau actif de galaxie avec le VLTI : résolution du tore au coeur de NGC 1068
- First observation of an active galactic nucleus with the VLTI : resolution of the torus at the heart of NGC 1068
- Les nouveaux astéroïdes cibles de la mission Rosetta : 21 Lutetia et 2867 Steins
- The new asteroid targets of Rosetta mission : 21 Lutetia and 2867 Steins
- Les nouveaux astéroïdes cibles de la mission Rosetta : 21 Lutetia et 2867 Steins
- The new asteroid targets of Rosetta mission : 21 Lutetia and 2867 Steins
- Atomic hydrogen from circumstellar shells around AGB stars
- L’hydrogène atomique dans les enveloppes circumstellaires autour des étoiles AGB
- De l’antigel dans la comète Hale-Bopp
- Antifreeze in comet Hale-Bopp
- De l’antigel dans la comète Hale-Bopp
- Antifreeze in comet Hale-Bopp
- Répartition des glaces de H2O et CO2 dans la calotte polaire sud de Mars Observations OMEGA/Mars Express
- Repartition of H2O and CO2 ices on the south polar cap of Mars Observations OMEGA/Mars Express
- Répartition des glaces de H2O et CO2 dans la calotte polaire sud de Mars Observations OMEGA/Mars Express
- Repartition of H2O and CO2 ices on the south polar cap of Mars Observations OMEGA/Mars Express
- Atomic hydrogen from circumstellar shells around AGB stars
- L’hydrogène atomique dans les enveloppes circumstellaires autour des étoiles AGB
- Time evolution of protoneutron stars
- L’évolution temporelle des proto-étoiles à neutrons
- Time evolution of protoneutron stars
- L’évolution temporelle des proto-étoiles à neutrons
- First results of the ESA/Mars Express orbiter around Mars
- Premiers résultats de la sonde Mars Express de l’ESA en orbite autour de Mars
- First results of the ESA/Mars Express orbiter around Mars
- Premiers résultats de la sonde Mars Express de l’ESA en orbite autour de Mars
- Lancement de Rosetta par Ariane-5
- L’Observatoire participera à la réalisation de l’instrument infrarouge MIRI, sur le futur télescope spatial JWST
- Paris Observatory will participate in the realisation of the infrared instrument MIRI, on the future space telescope JWST
- L’Observatoire participera à la réalisation de l’instrument infrarouge MIRI, sur le futur télescope spatial JWST
- Paris Observatory will participate in the realisation of the infrared instrument MIRI, on the future space telescope JWST
- Conceptual unification of elementary particles, black holes and the primordial states of the universe
- Unification conceptuelle des particules élémentaires, trous noirs et les états primordiaux de l’univers
- Conceptual unification of elementary particles, black holes and the primordial states of the universe
- Unification conceptuelle des particules élémentaires, trous noirs et les états primordiaux de l’univers

